skip to main content
The County of DuPage
Wheaton, Illinois

Model Education & Status

How does DuPage County conduct Hydrologic and Hydraulic Analysis

DuPage County has six watershed planning areas including: Salt Creek, East Branch of the DuPage River, West Branch of the DuPage River, Sawmill Creek, Des Plaines River Tributaries, and the Fox River Tributaries. The County is unique in its development of the hydrologic and hydraulic models used in its watershed planning and flood plain mapping. Rather than using single event, steady state models such as HEC1 and HEC2, the Stormwater Management Division utilizes continuous simulation and dynamic routing models. The reasons DuPage County selected this methodology was; (1) the continuous simulation hydrologic model is used to capture the effects of antecedent moisture on runoff volumes and peaks, and to account for a non-uniform precipitation distribution over the watershed; (2) the effects of backwater, flood plain storage, and complex urban stream systems have a significant impact on the hydraulics of DuPage County streams.

This approach produces continuous flow and stage information based on precipitation that has occurred in the past. From this data, flow and stage duration information is readily available for not only large events, but also for time of dry conditions and small runoff events. This methodology also provides the County with the necessary information to properly implement stormwater programs such as flood plain mapping, flood forecasting, water quality protection and enhancements, wetland creation, and project analysis.

The following presents detailed explanations on how each model program is used:


The Hydrologic Simulation Programs - FORTRAN (HSPF) was developed by Hydrocomp International, Inc., and currently maintained by the USEPA. HSPF is used to crate the hydrologic inputs for the hydraulic analysis. The model simulates continuous runoff for various land cover types for a continuous period of precipitation record. The model incorporates infiltration, interflow, depressional storage, soil storage, snowmelt, overland flow, evapotranspiration, and changes in soil moisture in determining the runoff. Seven long-term precipitation gages are utilized to develop a forty-five year continuous time series meteorological input file, with six of these gages being maintained by National Oceanic and Atmospheric Administration (NOAA) and one by Argonne National Laboratory. Six land cover categories defined as impervious, flat grass, medium grass, steep grass, forest, and agricultural have been developed and calibrated throughout the county to observe flows recorded at stream flow gages operated by the United States Geological Survey (USGS). The resulting output from the HSPF is a time series file (TSF) of runoff for each land cover type and each rain gage.

Further information regarding HSPF.


The hydraulic analysis is achieved using the dynamic flood routing model known as Full Equations (FEQ). FEQ is used for both project analysis and flood plain mapping. FEQ was developed by Dr. Delbert Franz of Linsley, Kraeger Associates, Ltd., and verified and supported by the USGS. The FEQ model represents unsteady flow in channels and reservoirs, and is based on the numerical solution of the Saint-Venant equations describing one-dimensional flow in open channels. FEQ uses the TSF’s created from the HSPF output and can represent the effects of flood plain encroachment, on-line and off-line storage, diversions, channel improvements, bridges, culverts, dams, weirs, and other flow impediments. Complex hydraulic structures such as time or stage dependent gates, and complicated flow paths such as split flow, can be represented readily in FEQ. The model is flexible enough to represent the complex hydraulic nature of DuPage County streams.

Information on FEQ from the USGS.

FEQ/FEQUTL Documentation

FEQ Documentation: Version 10.93

FEQUTL Documentation: Version 5.67


PVSTATS, "peak-to-volume", was developed for use with the continuous simulation approach employed by DuPage County . The computer program that is PVSTATS is used to compute the peak-to-volume calculations. The basis for the method is to estimate both the probability distribution of flood volume and the regression relationship between flood peaks conditioned on flood volume. At the site of interest, flood volumes are extracted and a probability distribution is fit to this series yielding a frequency estimate of volume. This exploits the fact that flood volumes often conform to commonly assumed probability distributions, even when flood peaks are affected by flood control projects. Many locally historical storms are used to define the regression relationship between flood peak and volume. Additional "big" mid-west storm events were used to fill in the upper end of the peak to volume relationship. The peak-to-volume curve is then integrated with the frequency estimates of volumes curve to produce the stage and/or flow at the site of interest for different recurrence intervals.

For further information on PVSTATS, please contact the DuPage Stormwater Division.

Model Status

View modeling progress and status.